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Thermodynamic restrictions of the relaxation function matrix, including restrictions imposed on its 
antisymmetric part, have been obtained for abstract thermodynamic systems with memory. Examples of 
particular realizations of such systems are presented. 

In constructing new phenomenological models of continua, it is very important to include thermodynamic 

restrictions. First of all, this concerns models of materials with memory [1-3 ], for which thermodynamics allows 

predictions in a very wide range. However, models of materials with memory are also of interest for the 

thermodynamic theory itself as an attractive object for application of its principles and concepts and their perfection 

by comparing predictions with experiment [3-9 ]. Of course, the theory should be developed to a level that would 

ensure experimentally verifiable results. 

In [10, 11 ] the present authors suggested an effective method for investigating the properties of relaxation 

functions for media with memory following from the second law of thermodynamic theory based  on the Clausius- 

Duhem inequality. In [12, 13 ] this method was extended to the case of a complete set of relaxation functions, 

including functions describing both main and cross effects, and corollaries of the second law, governing the 
interrelation of the cross effects, were obtained. However, the restrictions obtained there only concern the 

symmetric part of the matrix of relaxation functions. 

In this article further development of this method is described and the results include restrictions of the 

antisymmetric part of the matrix of relaxation functions. Moreover, this method is extended to the case of abstract 

thermodynamic systems and many cases discussed earlier can be concrete realizations of them. In conclusion some 

examples of such realizations are given. 

1. Notation and Definitions. Let R and R + be sets of real and real nonnegative numbers; S be the 

configuration space, which is a finite dimensional linear vector space of elements a, r ,  7 . . . .  with the inner product 

< .,. > and the norm I �9 I ; L(S) be the vector space of all linear mappings A, B, C , ... of the space S into itself 
with the norm I [. ]l, where 

I [AI 1 = sup {IA~I : cz E s, I~l = 1 }. (1) 

For any AEL(S) the transformation in L(S) conjugate to it (or the transposed A) is denoted by A x and 
defined by 

for all a, fiGS. 

The history f is a measurable function f:R+--,S with the norm 

II111 = i II (s)l ~ ~ (s) ds, 
o 
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where ~:R+~R + is a continuous monotonically decreasing influence function integrable on R +. 

The Hilbert space x of all f with the finite norm (3) is called a space of histories. The history of a particular 

form, constant for all s --. 0 and equal to an arbitrary aES, is denoted by a + and called a constant history. 
The set ~a = Sxx of pairs A = (a, f) with the norm II AIIs = ( la l  2 + II ill 2 )1/2 will be called a space of 

states. 

The two following functions of state will be assumed prescribed: 

a". '~S is a constitutive functional of generalized forces; 

h".'T~R is a constitutive functional of a thermodynamic potential. 
Both functionals are assumed constant and Frechet differentiable in T, and h is twice Frechet differenciable. 

This implies the existence of the partial derivatives for these functionals, for example, Da".'~--,L(S) and  
5a~S~L(x), defined for any AE T, tiES, f and g~x as follows: 

D~r(A)[~ d ~(a.+.~,13 ' hlx=+o; &~(A)(g)=  d " . . . . . .  o (cz, l + Lg)lx=+0. (4) 
dZ, dZ, 

Let CCS be a cone of admissible configurations in S. The function of time e:R--,C, bounded with the 

piecewise continuous derivative, is called a configurational trajectory of the system. 
At time t each configurafional trajectory defines the configurational history etEr and the state of the system 

AtEx at the moment t as follows: 

e t (s) ---- e (t - -  s) - -  e (t), A t (s) ---- {s (t), e t (.)}. (5)  

The state Ae 0 = {e, 0+}, where 0 + is the constant history equal to zero everywhere, called an equilibrium 

state. A set of states in the form (5) forms a subset of admissible states ~ in ~. 
Using the configurational trajectory and the constitutive functionals, it is possible to define the trajectory 

of generalized forces ae:R-~S and the trajectory of a thermodynamic potential he:R-->R in the following way: 

o~ (t) = ~r (A t) = o (e (t), e t (.)), h~ (t) = h (A t )=  h (e (t), s t (.)). (6) 

The triplet of all three trajectories of the system will be called the thermodynamic trajectory. 
2. Thermodynamic Theory. Thermodynamic consideration within the framework of this approach is based 

on the following postulate that expresses the second law of thermodynamics: 
The thermodynamic postulate (TDP). For any thermodynamic trajectories the Clausius-Duhem inequality 

is fulfilled: 
< (re, ~ ) ~/~.  (7)  

Here the dot superscripts are used to denote time derivatives. 
A necessary and sufficient condition for satisfying this postulate is contained in the following theorem (see 

similar theorems for specific systems in [5 ]): 
T h e o r e m 1. The TDP is fulfilled if the constitutional functionals satisfy the following relations: 

(~ (A t) = Oh (A t) - -  Dh (at), (8) 

8h  (s t, s t - -  e (t)+) (~t) ~< 0,  (9)  

where the derivative D~:~o->S is defined by the relation 

( b/~ (a), 13 > = 8/~ (A)(8+) (10) 

for all tiES, A E  T. 
Introducing the relaxation function R:R+-~L(S), it is possible to use Riss' lemma on the representation of 

linear potentials to express the historically linear part of the Taylor series of the functional ~" about a certain 

equilib um state A~ -- 0 as follows: 
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where 

(A t) " o + Do (A!o)(S (t) 6~ (A~ t ---- o (A,.) - -  eo) + - -  s (t)+) + 

i A o A ~ + 0 (11 At - -  ~01.1) = ~o + E~ (t) + R (s) ~ (t - -  s) ds + 0 (11 At - -  ~o11), 
0 

. ^ 0 

o0 o (A,.) -- Do (A~ e0, E = D~ (A~ -=,/)~ (A~ 

(11) 

and R is determined from the relations 

fi~ (A~ = 
o 

for all fE~c, 

dR(s) t(s)dS, R(oo)=0 
ds 

(12) 

3. Thermodynamic  Restrictions of the Relaxation Function. Subsequent investigation of the properties of 
the relaxation function R following from the requirement of satisfaction of theTDP is based on the following lemma, 

which is a corollary of Theorem 1. (Here we omit the proof of this lemma based on Taylor  functional series 

expansion of the lef t-hand side of inequality (9) since it basically does not differ from the proof of similar results 
in [10, 11].) 

L e m m a. I f  the TDP is satisfied, the functional "h has the following property: for any equilibrium state 
A 0 and any fEx such that f' = d f / d s ~ x  the inequality 

( ( D ~  (A ~ )q') - bs~  (A ~ )(F)), f (0) > + 8~  (A ~ )(t', I) > 0. (13) 

is satisfied. 
Since the differential operators D, D and 6 commute with one another, relation (8) can be used to reduce 

inequality (13) to the form 

( 6o( A~ )(['), I (0))  + 62/~ ( a  ~ )(f', [) ) 0. (14) 

Let us consider two particular choices of elements f in ~r satisfying the hypothesis of the lemma: 

[~. (s) = ~C~o.(s) + PS,o (s), (15) 

[~ (s) = aSo  (s) - -  [~Co (s), (16) 

where So(s) = sin(cos); Co)(s) -- cos(cos), co _ 0. 
Since fl ,  f lea:  and f2, f'2Ex, they can be substituted into (14) to obtain the following inequalities: 

( 6~r(a ~ )(--  maSo~ + co[3Co), .cz > -t- 6~h(a ~ )((-- (o~zSo + (opC~), (17) 

(~c~ + psi))>~ 0, 

< ~ (a ~ )(~o~c~ + ~ops~), - p > + ~ h  (a ~ )((o~c~ + ~opso), 
(18) 

( a s .  - -  pc~)) ~> 0. 

Since for the fixed state A 0 the second-order Frechet derivative is a bilinear functional symmetric on 
2 ̂  0 x x x  (i.e., 62~(A0)(f 1, f2) = c~ h(As)(f2, fl) for any fl, f2Ex [14]), it can easily be shown that the terms with 62~ 

in the inequalities (17) and (18) are equal but have opposite signs. Therefore, in summing these inequalities the 
mentioned terms are cancelled and as a result we have 

< 6~J (A ~ ) ( - -  co~S~ + co~C~), c~ > - -  < 6~ (A ~ )(o)~C~ +.co~S~), [~ ) > /0 .  (19) 

Substitution of the terms into (19) in terms of the relaxation function R according to (12) and division of 
this inequality by co (co >_ 0) give 

- - ( ( i  R,(s)(zsincosds), cz> + ( ( i  R'(s)~c~176 ' ~z>-- - 
o o 

773 



o 0 

(20) 

Integrating by parts here, using (2), and denoting the Fourier cosine and sine transforms of the function 

R by Rc(a 0 and Rs(a0, respectively, reduces the inequality (20) to the form 

co [ < Ro (o,) o~, 

Letting co--,0, we obtain 

> + < ~,, (,o) 1~, 1~ > + < (.~o (,.o) - ~ (,.o)) I~, = > ] + 

+ < (R (o) - R • (o)) I~, = > ~> O. 

< (~ (o) - -  R• (o)) 8; ~ > ~> o, 

(21) 

(22) 

hence it follows (because a and fl are arbitrary) that 

R (0) - -  R • (0) = 0. (23)  

With the help of this relation inequality (21) reduces to the form 

( Re (co) ~, o~ ) + ( R~ (co) ~, 1~ ) + ( (Re (co) - -  ~x  (co)) 13, ~z ) ~ 0. (24) 

In a similar way it can be shown that not only are relation (23) and inequality (24) corollaries of (21), but 

vice versa, inequality (21) follows from (23) and (24). 

In this way we have proved the following 

T h e o r e m 2. In  order that the TDP be satisfied, it is necessary that the relaxation function R in (12)  

satisfy conditions (23)  and (24) for any co >_ 0 and a, t iES 

A new element in this result is the fact that conditions (23) and (24) contain restrictions of the 

antisymmetric part of the relaxation function. 

4. Applications of the General Theory. One of the possible concrete realizations of the general theory can 

be obtained if the "mechanistic" terminology used here is understood in a nearly direct sense, i.e., if it is assumed 

that e is the strain gradient tensor, a is the Piola-Kirchhoff stress tensor, h is the Helmholtz specific free energy, 
and R is the stress relaxation function. Here S is the space of second-order tensors, CCS is the subspace of tensors 

satisfying the condition det e _> 0, L(S) is the space of fourth-order tensors. Then the inequality (7) is a particular 

case of the ordinary Clausius-Duhem inequality, expressing the requirement of nonnegativity of entropy production, 

and relations (23) and (24) reflect properties of the stress relaxation function following from the second law. 

In a similar way, from the general theory it is possible to obtain a model of media with thermal and 

deformational memories, discussed in Sect. 3 of [13 ]. This model is a modification of Chen-Gurtin's model [15 ]. 

The modification consists in using the inverse absolute temperature and its gradient as independent variables and 

in introducing the corresponding thermodynamic potential and is necessary for construction of a thermodynamically 

well-posed linear theory [16 ]. In this case e = {9, F, g-}, where ,9 is the inverse absolute temperature; g is the inverse 

temperature gradient, and 
t "  

~(t) = ~" g(s)as. 

Then, S --- R•  3) • 3, where E 3 is the three-dimensional Euclidean space; L(E 3) is the vector space of 

second-order tensors. The inner product of the elements al  = {21, H1, fl) and a2 -- {22, H2, f2} in S is introduced 
naturally: 

< ~1, ~z2 > ---- }~1)~2 + tr (H1H,) ~ fl" f2. 

Then, in this case C is a set of the elements {e, 0S, q/p}, where e is the specific internal energy; S is the 
Piola-Kirchhoff stress tensor; q is the heat flux; p is the medium density. Here h is the following thermodynamic 
potential: h -- e0 - r/, where r/is the specific entropy. The standard requirement of nonnegative entropy production 
in the form of the Clausius-Duhem inequality reduces to the form (7) in the present notation. In this case the 
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relaxation function is a matrix of, generally speaking, tensor-valued functions, composed of relaxation functions 

describing all the main and cross effects, and the properties of these functions, including the interrelation of cross 

effects, are contained in Theorem 2. The first two terms in inequality (24), following from this theorem, are 

quadratic forms and only depend on the symmetric part of the matrix of relaxation functions, while the last term 

depends on the antisymmetric part of this matrix, imposing thermodynamic restrictions on it. 

One more particular realization of the general theory is obtained if S is a Cartesian product of three- 
dimensional Euclidean spaces: S = EaxE 3 and e is a pair of three-dimensional vectors {E, H}, where E and H are 
the magnetic and electric intensities. Then, a- -  {D, H}, where D and B are the electric and magnetic inductions 

and h is the free enthalpy defined as in [17 ]. In this interpretation equality (7) is equivalent to the Clausius-Duhem 
inequality (4.4) in [16], and relations (23) and (24) express properties of the material equations of the 
electrodynamics of continua with time variance, following from the thermodynamic restrictions, including the 

requirement of a definite interrelation of cross effects. As a particular case, they contain the properties obtained in 

[16], and, moreover, they contain additional restrictions concerning the antisymmetric part of the matrix of 
relaxation functions. 

In conclusion, we note that relation (23), which expresses the property of symmetry of the matrix of 
instantaneous responses, is a certain analogy of the Onsager reciprocal relation in ordinary nonequilibrium 

thermodynamics [18 ]; however, unlike the latter, it is obtained here as a corollary of the requirement of 
nonnegativity of entropy production (the irreversibility principle) and does not need a special postulate. 
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